Controlling Mobile SDK via External
Hardware

Advanced Programming in C/C++

By B. Sc. Efthimis Pegas

National Technical University of Athens
21/12/2017

This work is destined for academic purposes only.

Dedicated to all those who strive to make the world a better
virtual one.

Special thanks to my advisors and mentors
both known and anonymous.

Copyright © 2017 - 2018 by Efthimis G. Pegas
All rights reserved. This booklet or any portion thereof
may not be reproduced or used in any manner whatsoever
without the express written permission of the publisher
except for the use of brief quotations in a book review
or the use for the purpose it was meant.

Authored and published in Germany

Duisburg — Essen University, Germany
2 Forsthausweg
Duisburg, 47057

efthimispegas@gmail.com

Copyright © 2017-2018 by Efthimis Pegas

mailto:efthimispegas@gmail.com

TABLE OF CONTENTS

TINTRODUCTION. ... 3
1.1 A GRASP OF THE ARDUINO BOARD AND IDEccoiiiiiiiiniieriiciicieicccci 3
2 DEVELOPING IN THE ARDUINO IDEocoiiiiiiii e 4
2.1 A SIMPLE EXAMPLE ...ttt ettt ettt sttt ettt nbe e 4
3 ARDUINO & VISUAL STUDIO 2013 SERIAL COMMUNICATION ...ccuvvivieieaieenieeenes 6
3.1 CONTROL ARDUINO VIA VS (SENDING DATA ONLY)...uuuiiiiiiieeeieiiiieieeeeee e 6
3.2 BIDIRECTIONAL COMMUNICATION (SEND & RECEIVE)cuvviiiieaiiiiiiiieeeae e 8
3.3 SENSING A POTENTIOMETER (TRANSMITTING DATA ONLY)...eeeiviiiiieeniiee e esieeesiveesnee e 12
3.4 MULTITHREADING & SERIAL COMMUNICATIONcettiieiiiiririiiieeesssrirneenee e s 14
4 MOBILE SDK & ARDUINO INTERACTIONvtiutiiieerirenresreesteesseesteesinesineeneennee e 19
4.1 INTEGRATING C++ SOURCE CODE INTO MOBILE SDK.......ccoiiiiiiiiiiiieieei 19
4.2 CREATING HYBRID CLASSEStiuttiteteiuietieiete st steste st eteseente st snesbesbesteeneeseeseesneniesneas 19
5 SINGLE PENDULUM APPLICATION ...vvviiiieeiiiirtreeiteeesinnrrreeeeesssssisrreneesesssssnnneees 25

Copyright © 2017-2018 by Efthimis Pegas

1. Introduction to Arduino

1. Introduction
1.1 A Grasp of the Arduino Board and IDE

Arduino is an open-source platform used for building electronics projects. Arduino consists
of both a physical programmable circuit board (often referred to as a microcontroller) and
a piece of software, or IDE (Integrated Development Environment) that runs on your
computer, used to write and upload computer code to the physical board.

The Arduino platform has become quite popular with people just starting out with
electronics, and for good reason. Unlike most previous programmable circuit boards, the
Arduino does not need a separate piece of hardware (called a programmer) in order to load
new code onto the board — you can simply use a USB cable. Additionally, the Arduino IDE
uses a simplified version of C++, making it easier to learn to program. Finally, Arduino
provides a standard form factor that breaks out the functions of the micro-controller into a
more accessible package.

The Arduino Nano (see Pic. 1) of the Arduino Family is a small, complete, and
breadboard-friendly board based on the ATmega328 (Arduino Nano 3.x). It has more
or less the same functionality of the Arduino Duemilanove, but in a different package.
It lacks only a DC power jack, and works with a Mini-B USB cable instead of a standard
one.

L OOMm
X X IE

=]
2|

b4 A::s;';a”.s“a;;ug
ND V2.2 LSy
@ TX RX Ll®
D2 G 2
g I I o I Al
== -|®
Qe o ||®
e b
. b
] e
o8 AL
e e
(]

'®| 2008 USA g
DL!

ol Il We
®lp * ()

E—

Pic. 1: The left image shows the Arduino Nano board and the right image shows the pinout of the board

Copyright © 2017-2018 by Efthimis Pegas

http://arduino.cc/
http://en.wikipedia.org/wiki/Microcontroller
http://arduino.cc/en/Main/Software

2. A simple example

2. Developing in the Arduino IDE
2.1 ASimple Example

The programming of the board is basically what makes it so commonly used for a vast
variety of applications. In a quick demonstration we will try to interact with the board by
establishing a serial connection between the computer, the board, a two-state button and
an LED (see Pic. 2). We initialize the pin that refers to the LED (pin 13) and we create the
main loop with the intention to make the LED blink for 0.5 sec. The code is the following
(see also in 2 folder):

e BIlinkLED.ino
// initialize pin 13 of the arduino board as the output
int LED = 13;

int 1=0;

// the setup function runs once when you press reset or power the board
void setup(Q) {
// initialize digital pin LED BUILTIN as an output.
Serial .begin(9600);
pinMode(LED, OUTPUT);
}
void loop() {

int t = millis()/1000; // holds the time (in sec) since the last reset

// print the time from last reset
it (t >= 10) {
Serial .print(”l was reset ");
Serial .print(t);
Serial .print(" seconds ago...");
Serial.printin(Q);
Serial .printIn(’'Stop me anytime now...");

delay(1000);

Copyright © 2017-2018 by Efthimis Pegas

else{
for (i; 1<10; i++) {

digitalWrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for 0.5 seconds
digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait for 0.5 seconds
//t++
Serial.print(”l was reset ");
Serial .print(i);
Serial .print(’" seconds ago...");
Serial .printin(Q);

Serial .printIn(’'Stop me anytime now...");

//delay(1000);
//printf ("l was reset %d seconds ago...\nStop anytime now...\n", t);

}

We blink the LED 10 times and then the for loop is never executed again. If we want to use
the button as an external RESET then we only have to connect its pins to the RST and the
GND pins of the board correspondingly.

..............

oooooooooooooooooo
oooooooooooooooooo

.................
................................

fritzing

Pic. 2: A simple circuit.

Copyright © 2017-2018 by Efthimis Pegas

3. Serial Port Communication

3. Arduino and Visual Studio 2013 Serial Communication
3.1 Control Arduino via Visual Studio (Send Data Only)

In the Arduino IDE the communication between the Arduino board and the PC is being
established implicitly when we upload a sketch to the board. In Visual Studio 2013 we need
to make sure that we manually create and include a Serial library in our project. After some
research, we managed to open a communication channel, in which we simulate a digital
lock. Specifically, we give a string of characters as an input in Visual Studio command prompt
and if the input complies with the given restriction we enable the LED to turn on indicating
the correct result. Otherwise, the LED blinks 3 times and goes off. The program in Visual
Studio C++ is the following (see also in the 3.1 folder):

e arduino.cpp

#tinclude <iostream>
#include <stdio.h>
#include <conio.h>
#tinclude "tserial.h"
#include "bot_control.h"

using namespace std;

serial comm; //serial is a class type defined in these files, used for referring to the
communication device

void main() {

char answer, data[100]; //To store the character to send

int i = 0;

do {
cout << "Enter characters to be sent:\t"; //User prompt
cin >> data;

comm.startDevice("COM3", 9600);

printf("Started\n");

/* “COM 2” refers to the com port in which the USB to SERIAL port is attached. It is
shown by right clicking on my computer, then going to properties and then device manager

9600 is the baud-rate in bits per second */

comm.send_data(&data[@]); //The data is sent through the port

printf("\n");

printf("Data sent to device.\nProceeding...\n");

Sleep(2000); //waits for 2 sec

printf("Try again? (y/n)\n");

cin >> answer;

comm.stopDevice(); //The device is closed down
} while (answer == 'y');

Copyright © 2017-2018 by Efthimis Pegas

3. Serial Port Communication

e SerialPortComm.ino
void setup(Q) {
pinMode(13, OUTPUT);
Serial .begin(9600);

void loop(){
if(Serial.available()){

String ch;

ch = Serial._readString(Q);

Serial .setTimeout(2000);

ch.trimQ;

if(ch=="ep215"| |ch=="EP215""){
digitalWrite(13, HIGH);
Serial .printIn("Unlocked..."™);
delay(2000);
digitalWrite(13, LOW);

}

else {
Serial .printIn(""Wrong password, please try again');
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);
delay(500);
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);
delay(500);
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);

i3

Copyright © 2017-2018 by Efthimis Pegas

3. Serial Port Communication

3.2 Bidirectional Communication (Send & Receive Data)

The next step was to establish bidirectional communication between the two platforms, in
order to send data from Arduino to Visual Studio and then invert the process by receiving
data to Arduino from Visual Studio. After connecting the two platforms through a serial
port, we exchange messages and data which result to altering the state of the LED. The code
is presented below (see also in the 3.2 folder)::

e SendReceive.ino
#define BUTTON_PIN 5
#define LED 13
#define DELAY 20 //in ms

boolean was_pressed; //prev state

void setup() {
Serial .begin(9600); //baud rate
pinMode(LED, OUTPUT);
pinMode(BUTTON_PIN, INPUT);
digitalWrite(BUTTON_PIN, HIGH); //negative logic

//function that checks if the button is pressed or not

boolean handle button() {

boolean event;

int pressed = !digitalRead(BUTTON_PIN); //negative logic -> pin low means HIGH

event = I(pressed && 'was_pressed);

return event;

Copyright © 2017-2018 by Efthimis Pegas

3. Serial Port Communication

void loop() {
//store the event (only when pressed)
boolean rising_edge = handle_button();
char start = "07;
if(rising_edge) {
//receives the signal that button isn"t pressed
start = "07;
}
else {
//receives the signal that button is being pressed
start = "17;
Serial .printin(start); //send it to VS2013
}
//writing data from VS to arduino
String input;
//1T any input is detected in arduino
if(Serial.available() > 0){
//read the whole string until "\n" delimiter is read
input = Serial._readStringUntil("\n");
//1T input == "on" then turn on the led and send a reply
while (start == 1) {
}
it (input.equals('on™)){
digitalWrite(LED, HIGH);
Serial .printIn(’'LED is on"™);
}
//1f input == "off" then turn off the led and send a reply
else if (input.equals('off)){
digitalWrite(LED, LOW);
Serial .printIn(""'LED is off'");

Copyright © 2017-2018 by Efthimis Pegas

10

3. Serial Port Communication

}
delay(DELAY);}

e SendReceive.cpp

#include <iostream>
#tinclude <sstream>
#include <stdio.h>
#tinclude <stdlib.h>
#include <string.h>

#tinclude "SerialPort.h"

using std::cout;
using std::cin;
using std::endl;
using std::find;

using namespace std;

/*Portname must contain these backslashes, and remember to
replace the following com port*/
char *port_name = "\\\\.\\COM3";

//String for incoming data
char incomingData[MAX_DATA_LENGTH];

//String for outgoing data
char output[MAX_DATA LENGTH];

SerialPort arduino(port_name);

void send() {

while (arduino.isConnected()){
std::string input_string;
char* c_string;

cout << "Asking permission to proceed.([Type] on/off): ";

//Getting input
getline(cin, input_string);
printf("\n");

//Creating a c string

c_string = new char[input_string.size() + 1];

//copying the std::string to c string
std::copy(input_string.begin(), input_string.end(), c_string);
//Adding the delimiter

c_string[input_string.size()] = "\n';
char ans = c_string[1];

// cout << ans << endl;

//writing string to arduino

Copyright © 2017-2018 by Efthimis Pegas

11

3. Serial Port Communication

if (ans == 'n") {
//turning led on
printf("Permission granted.\n");
//Sleep(500);
printf("Turning led on now...\n\n");
//flag = !flag;

}
else if (ans == 'f') {
//turning led off
printf("Permission granted.\n");
//Sleep(500);
printf("Turning led off now...\n\n");
}
// bool flag = false;
// do {
// printf("Do you wish to continue? ([Type] y/n): ");
// cin >> answer;
// printf("%s\n", answer);
// if (answer != 'y' || answer != 'n'){
// printf("Not a valid answer...\n");
// flag = !flag;

b
//} while (flag);

//-->here check in arduino what to do according to the order
arduino.writeSerialPort(c_string, MAX_DATA_LENGTH);
//Getting reply from arduino

arduino.readSerialPort(output, MAX_DATA_LENGTH);

//printing the output

cout << output;

//freeing c_string memory

delete[] c_string;

void receive() {
//this while loop handles the signal sent from arduino -> waits button to be pressed
while (arduino.isConnected()) {
int read_result = arduino.readSerialPort(incomingData, MAX_DATA_LENGTH);
//prints out data
if (atoi(incomingData) == 1) {
//start button pressed ->do stuff
//cout << incomingData << endl; //prints out data from arduino
printf("Button pressed...\n");

Sleep(500);
printf("Commencing procedure...\n");
Sleep(500);
break;
}
}
}
/* __ */
int main()
{

if (arduino.isConnected()) {
cout << "Connection Established" << endl;
}

else

Copyright © 2017-2018 by Efthimis Pegas

12

3. Serial Port Communication

cout << "ERROR, check port name" << endl;

receive();
//wait a bit between comms
Sleep(100);

send();
//wait a bit
Sleep(500);

3.3 Sensing a potentiometer (Transmitting Data Only)

In the next example, we used the Arduino as a resistance sensor and we then transmitted
the value to Visual Studio. This example is essential to the project’s purpose to manipulate
a pendulum’s angle according to a potentiometer’s value (see also in the 3.3 folder):.

e PotentiometerSensor.ino
#define POTENTIOMETER_PIN A7 //potentiometer's pin
#define LED_PIN 13
#define DELAY 20 //ms

int out = @; //store the sensor's value

void setup() {
Serial.begin(9600);
pinMode (LED_PIN, OUTPUT);

pinMode (POTENTIOMETER_PIN, INPUT);

void loop() {
out = analogRead(POTENTIOMETER_PIN); //read value of potentiometer
// digitalWrite(LED_PIN, HIGH);

// delay(out); //delaying (out) ms

// digitalWrite(LED_PIN, LOW);

// delay(out); // delaying (out) ms

Serial.print("DELAY (ms) : ");

Copyright © 2017-2018 by Efthimis Pegas

13

3. Serial Port Communication

Serial.println(out);

delay(500);
}

e Potentiometer.cpp

#include <iostream>
#include <sstream>
#tinclude <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "SerialPortComm.h"

using std::cout;
using std::cin;
using std::endl;
using std::find;

using namespace std;

/*Portname must contain these backslashes, and remember to
replace the following com port*/
char *port_name = "\\\\.\\COM3";

//String for incoming data
char incomingData[MAX_DATA_ LENGTH];

//String for outgoing data
char output[MAX_ DATA LENGTH];

SerialPort arduino(port_name);

int main() {
//this while loop handles the signal sent from arduino -> waits button to be pressed

if (arduino.isConnected())

printf(" Connection established...\n");
else

printf("ERROR! Check connection cable.\n");

while (arduino.isConnected()) {
int read_result = arduino.readSerialPort(incomingData, MAX_DATA_LENGTH);
//prints out data
cout << incomingData << endl; //prints out data from arduino
//start button pressed ->do stuff

//hold on for a while
/*Sleep(500);*/

Copyright © 2017-2018 by Efthimis Pegas

14

3. Serial Port Communication

3.4 Muultithreading and Serial Communication

In hardware development, when you program your hardware to perform one task
everything is simple; your code consists of a main loop that performs all the actions. Such
an example was presented in §3.3, where we implemented a potentiometer sensor. But
what happens when you need to perform several tasks between your software and
hardware?

Having the main loop go through all the tasks can be time consuming, as we can easily
realize, based on the example described in §3.2. In that example, we called the same
function for transferring and receiving data. That cost us time, as well as memory space.

We noticed that when we received the decision (“turn led on”/”turn led off”) from Visual
Studio to Arduino (handshake), it took some significant amount of time for the Arduino to
reply with the result (“LED turned on” or “LED turned off”). Furthermore, we noticed that
the launch signal (start) was also printed (“1”) during the printing of the results to the Visual
Studio’s screen, which is superfluous, memory — consuming, if not frivolous way of coding.

These problems can be resolved by implementing multithreading developer techniques to
our multitasking programs. We implemented the examples in §3.2 and §3.3 with the use of
threads'”). The results are increasingly better in terms of speed, memory usage and overall
performance. We can now see that, the messages are printed real — time and we avoid
printing the additional aces stored in the buffer when we press the launch button (start =
1).

The code is the following (see also in the 3.4 folder)::

e DataTransmitter.ino

#include <Thread.h>

#include <StaticThreadController.h>

#define POTENTIOMETER_PIN A7 //potentiometer™s pin

1 n this case we could implement a server to handle the button as an external interrupt, which is quite similar to implementing
thread techniques by reduction to only one thread.

Copyright © 2017-2018 by Efthimis Pegas

15

3. Serial Port Communication

#define LED_PIN 13
#define BUTTON PIN 5
#define DELAY 20 //ms

int out = 0; //store the sensor®s value
int pressed;

boolean was_pressed = 0; //prev state
char start = "0~;

char quit = "07;

boolean rising_edge;

//instantiate myThread
Thread* myThread = new Thread();

//measurements handler - myThread?2
void Callback(){
if (start == "1"){
digitalWrite(LED _PIN, HIGH);
out = analogRead(POTENTIOMETER_PIN); //read value of potentiometer
Serial .print("DELAY:"™);
if (out < 100)
Serial .print('0™);
if (out < 10)
Serial .print('0');
Serial .printin(out);
delay(350);

}

//function that checks if the button is pressed or not
boolean handle_button() {
boolean event;

pressed = IdigitalRead(BUTTON PIN); //negative logic -> pin low means pressed so HIGH

Copyright © 2017-2018 by Efthimis Pegas

16

3. Serial Port Communication

//initially pressed = 0 ->digitalRead returns 1 (negative logic)
event = (pressed && !was pressed);

return event;

StaticThreadController<l> controller(myThread);

void setup() {
// put your setup code here, to run once:
Serial .begin(9600);
pinMode(LED_PIN, OUTPUT);
pinMode (POTENTIOMETER_PIN, INPUT);
pinMode(BUTTON_PIN, INPUT);
digitalWrite(BUTTON_PIN, HIGH); //negative logic

//configure threads
myThread->onRun(Cal lback) ;

myThread->setlnterval (10);//doesn™t matter - is executed only once

while(!rising_edge){

rising_edge = handle_button();

if('rising_edge) {

//receives the signal that button isn"t pressed
start = "0°;

}

else {

//receives the signal that button is being pressed
start = "1°;

Serial .printin(start); //send it to VS2013 to start

Copyright © 2017-2018 by Efthimis Pegas

3.

17

Serial Port Communication

void loop(Q) {

controller.run(Q);

e DataReceiver.cpp

#include
#tinclude
#include
#include

#include

<iostream>
<stdio.h>
<windows.h>
<thread>

"Serial.h"

using namespace std;

Serial arduino;

//String for incoming data
char incomingData[MAX_DATA LENGTH];

//String for outgoing data
char* output;

void parseInput(char * buffer)

{

string input;
int measurement;

input

= string(buffer);

string firstFive = input.substr(e, 5);
string nextOne = input.substr(5, 1);
string lastThree = input.substr(6, 3);
string delayStr = string("DELAY");
string punctStr = string(":");

if (!strcmp(firstFive.c_str(), delayStr.c_str()) && !strcmp(nextOne.c_str(),

punctStr.

}

c_str()))

measurement = atoi(lastThree.c_str());
<< measurement << endl;

cout << "Measurement =

else // invalid input

{

cout << "Invalid input" << endl;

void launchSignal() {

while

(arduino.isConnected()) {

arduino.read(incomingData, MAX_DATA_ LENGTH);

if (atoi(incomingData) == 1) {

Copyright © 2017-2018 by Efthimis Pegas

18

3. Serial Port Communication
printf("Launch...\n");
output = "on\n";
break;
}
¥
}
/* ___ */
int main()
{
arduino.open();
if (arduino.isConnected())
printf("Connection Established\n");
else
printf("Error! Check connection cable.\n");
const int buffLen = 9; // "DELAY:xxx" is 9 characters
char buffer[buffLen];
std::thread start(launchSignal);
start.join(); //pause until start finishes
for (int iterCount = ©@; iterCount < 100; iterCount++) // loop for a while and quit
{
arduino.read(buffer, bufflLen); // Doesn't return until bufflLen bytes are read
parseInput(buffer);
}
return 0;
}

In the script above we basically integrated all the essential actions that we need our
software — hardware interaction to consist of. This includes launch, data transmission, data
reception and data interpretation. All that remains now is the implementation in Mobile
SDK platform.

Copyright © 2017-2018 by Efthimis Pegas

19

4. Universal Platform Interaction

4. Mobile — Arduino Interaction

Our main purpose is to be able to manipulate a structure’s properties (i.e. initial position,
velocity, acceleration etc.) via external hardware. Thus, the first issue we need to focus on
is merging Mobile software with 3™ party libraries and source code. Then, we need to tackle
the strictly secured Mobile infrastructure, which allows very few, if not any alterations, by
creating our own hybrid classes. Finally, we use these modifications to create the required
environment for our application in 3 steps.

4.1 Integrating C++ source code into Mobile SDK

Here we will discuss the first issue we need to address, including the Serial Communication
library. We need prepare a serial port, in order to establish a communication channel
between the two platforms, as illustrated previously (in §3.1 - §3.4). This is accomplished
by adding all necessary functions (open, read, write, close etc.) to our project. These
functions constitute the objects of our new class (MoSerialPort) which we will discuss later.
This way, we render our software able to receive data and transmit signals from and to the
Arduino board, throughout a use-specific interface.

4.2 Creating Hybrid Classes

A class in C++ is a user defined type or data structure declared with keyword class that has
data and functions (also called methods) as its members whose access is governed by the
three access specifiers private, protected or public (by default access to members of a class
is private). The private members are not accessible outside the class; they can be accessed
only through methods of the class. The public members form an interface to the class and
are accessible outside the class.

Our classis MoSerialPort and its structure is similartoa MoMap with a few add-ons.
It consists of two parts; the serial comms functions and Mobile’s modified motion methods
(hence the “hybrid” denomination). The serial comm methods are based on the structures
we illustrated in §3. The altered motion methods follow the old structure, but come with a
few changes to meet our requirements.

The essential methods are described below:

Copyright © 2017-2018 by Efthimis Pegas

20

4. Universal Platform Interaction

e Theread() is the function that is being called whenever there is data that needs to be
transmitted from the hardware to the software interface. That is, when we receive
the launch signal and when we receive the potentiometer’s value. It stores the data
in a buffer as a series of char types of size buff_size which changes respectively to the
string’s size (1 for the launch signal, 9 for the measurement message)

e The launchSignal() is similar to the one created in §3.4 with the only difference that
we now choose not to parse the incoming data to the function (instead we are
declaring it at the public sector of the class). This function receives the launch signal
(as the name states) from the Arduino board, once the board is securely connected
and the button is pressed. This is the first instance of hardware — software interaction
in our project. The Arduino senses the change in the button’s state and sends the
signal to a handler (thread implementation - §3.4), which is responsible for the signal
transmission to our software. It uses the read() function. After the launch signal is
received (buff_size = 1), the buffer’s size changes to meet the needs of the
parselnput() function (buff_size = 9).

e The parselnput() has the same form as described in §3. Takes no arguments, and uses
the buffer[buff size] to store the message that is being transmitted from the Arduino.
It deciphers the string message into a double, which then stores into a MoReal
variable. We will use this variable later to convert it into rads and assign it to the
angular variable that gives pendulum’s initial position. This method is the second and
more complicated instance of data transmission. It transforms the received message
(string) from the Arduino, which holds the measurement (double).

e The doMotion() has 1 argument, the action (a MoTransmissionSubtask) which focuses
on the system's position (thus its assigned value is DO _POSITION). This method’s
purpose is to initialize the mechanism’s state every time the main loop is executed
(this depends on the increment — dT of the simulation). This is achieved by calling
read() and parselnput() in the beginning of the function.

In the simulation, this yields that the angle be updated every dT secs with a new value
coming from the Arduino with the minimum delay possible.

Copyright © 2017-2018 by Efthimis Pegas

21

4. Universal Platform Interaction

The class’s script is the following (see also in final\ArduinoMobileComm_v5.1):
#include <iostream>

#include <cstring> //std::memset
#include <thread>

using namespace std;

#include "MoSerialPort.h"
//#include "MoMapChain_peiragmeno.h"

void MoSerialPort::init(/*MoAngularVariable &angle_, MoReal &a_, const string& name_*/)

{

/*angle = &angle_;
a = &a_;
setName(name_);*/

memset (&m_OverlappedRead, @, sizeof(OVERLAPPED));

}

void MoSerialPort::doMotion(MoAngularVariable &angle , MoReal &a_, MoTransmissionSubtask action)

{

// position kinematics

if (action & DO_POSITION) { // carry out position-dependent computations
angle .q = ((a_*360)/917)*DEG_TO_RAD; //digital to degree to rad conversion
cout << angle .q << endl;
Sleep(79);

}

// Block II: velocity kinematics
if (action & DO_VELOCITY) { // carry out velocity-dependent computations

// Block IV: EULER acceleration kinematics

if (action & DO_ACCELERATION) {

}

if (action & DO_EULER) { // EULER ACCELERATION same as velocity transmission but now with
accelerations as inputs

}

// Block V: compute CORIOLIS terms
if (action & COMPUTE_CORIOLIS) { // compute CORIOLIS terms for later use

}
// Block V: add CORIOLIS terms

if (action & USE_CORIOLIS) { // add CORIOLIS terms to the current acceleration

}

Copyright © 2017-2018 by Efthimis Pegas

22

4. Universal Platform Interaction

//instantiate my functions

void MoSerialPort::open()
{
// reset DCB
memset(&m_dcb, 0, sizeof(m_dcb));

// open the serial port
m_pComPortHandle = CreateFile("\\\\.\\COM3", GENERIC READ | GENERIC_WRITE, @, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL);

// set up the overlapped event
m_OverlappedRead.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

// set the DCB
GetCommState(m_pComPortHandle, &m _dcb);
m_dcb.DCBlength = sizeof(m_dcb);
m_dcb.BaudRate = 9600;

m_dcb.Parity = NOPARITY;

m_dcb.ByteSize = 8;
SetCommState(m_pComPortHandle, &m_dcb);

this->connected = true;
Sleep(ARDUINO WAIT TIME);

}

void MoSerialPort::read(char *buffer, int dwBytesToRead)

{
BOOL bReadStatus;

DWORD dwBytesRead, dwErrorFlags;
COMSTAT comStat;

// Empty the input buffer
PurgeComm(m_pComPortHandle, PURGE_RXCLEAR);

// Set comStat.cbInQue to zero (number of bytes in the input buffer)
ClearCommError(m_pComPortHandle, &dwErrorFlags, &comStat);

// Get the number of bytes in the input buffer
dwBytesRead = (DWORD)comStat.cbInQue;

// Wait until the unput buffer is full
while (dwBytesRead <= dwBytesToRead)
{

ClearCommError(m_pComPortHandle, &dwErrorFlags, &comStat);
dwBytesRead = (DWORD)comStat.cbInQue;

}

// Read the input buffer

bReadStatus = ReadFile(m_pComPortHandle, buffer, dwBytesToRead + 2, &dwBytesRead,
&m_OverlappedRead);

// Make sure the unput buffer is empty
PurgeComm(m_pComPortHandle, PURGE_RXCLEAR);

buffer[dwBytesToRead] = 0;
}

bool MoSerialPort::isConnected()

Copyright © 2017-2018 by Efthimis Pegas

23

4. Universal Platform Interaction
{
return this->connected;
b
void MoSerialPort::close()
{
if (m_OverlappedRead.hEvent != NULL)
CloseHandle(m_OverlappedRead.hEvent);
if (m_pComPortHandle != NULL)
CloseHandle(m_pComPortHandle);
if (this->connected)
this->connected = false;
b

void MoSerialPort::parselInput(char* buffer, MoReal &a)
{

string input;

/*int measurement;*/

input = string(buffer);

string firstFive = input.substr(@, 5);

string nextOne = input.substr(5, 1);

string lastThree = input.substr(6, 3);

string delayStr = string("DELAY");

string punctStr = string(":");

if (!strcmp(firstFive.c_str(), delayStr.c_str()) && !strcmp(nextOne.c_str(),
punctStr.c_str()))

a = atoi(lastThree.c_str());

cout << "Measurement = << a << endl;

else // invalid input

{
}

cout << "Invalid input" << endl;

}

void MoSerialPort::launchSignal(char inData[MAX_DATA_LENGTH]) {

while (isConnected()) {
read(inData, MAX_DATA_LENGTH);
if (atoi(inData) == 1) {
printf("Launch...\n");
//printf("%d", atoi(inData));
break;

}

//other necessary functions instatiations
void MoSerialPort::doForce(MoTransmissionSubtask action_)

{
if (action_ & DO_EXTERNAL)
{
¥

¥

Copyright © 2017-2018 by Efthimis Pegas

void MoSerialPort:

outFile << integratorTime->modelTime <<

{
}
void MoSerialPort:
{
}
void MoSerialPort:
{
}
void MoSerialPort:
{
b

:cleanUpForces()

:pushForces()

:popForces()

:print(ofstream& outFile)

Copyright © 2017-2018 by Efthimis Pegas

24

non,

)

25

5. Single Pendulum Application

5. Single Pendulum Application

After we finish creating our new class, we move onto the main task. Implementation in a
real — life application. We create our project, including the essential libraries as described
and the new class we generated. The task can be decomposed in three steps:

1) Ensuring that the measurement is correctly parsed into Mobile application and assigned
to a Mobile’s variable. For this reason, we created a simple application of an 1R mechanism
(one degree of freedom and one link) which outputs the measurements to the Visual
Studio’s prompt after assigning them to a Mobile variable (see also
ArduinoMobileComm_v1)

2) Testing that the measurement is parsed correctly into the doMotion(3) method and
refreshed every time the loop is executed. The code follows the one above, of a simple 1R
mechanism, with the addition of a for loop in order to see how the application responds
when time — dependent (see also ArduiniMobileComm_v2).

3) Reapplying those steps in a real — life application, including graphics. We further created
a MoScene in order to visualize the simple mechanism. Main purpose of this step is to
update the mechanism’s inertia properties in correspondence with a new measurement
(see also ArduinoMobileComm_v3).

Eventually, we developed the final application of a simple pendulum, where we initialize
the angle with the potentiometer every time we open the Mobile graphic editor (see also
ArduinoMobileComm_v5.1). We cite the main script here for justification but you can
always refer to the eligible folder and have an extended look as well as test the code:

/**
* *

* This version (_v5.1) demonstrates how the pendulum's initial state changes *

* respectively to the potentiometer's value with graphics e
* *

**/

#include <stdio.h>
#include <windows.h>
#include <fstream>

//#include <thread>
// Basic Mobile

#include <Mobile/MoBase.h>
#include <Mobile/MoMapChain.h>

Copyright © 2017-2018 by Efthimis Pegas

26

5. Single Pendulum Application

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoRigidLink.h>
#include <Mobile/MoMassElement.h>

#include <Mobile/MoElementaryJoint.h>
#include <Mobile/MoMassElement.h>
#include <Mobile/MoMechanicalSystem.h>
#include <Mobile/MoAdamsIntegrator.h>

#include <Mobile/Inventor/MoScene.h>
#include <Mobile/Inventor/MoWidget.h>

// own classs
#include "MoSerialPort.h"

int main()

{
//simulation data to output file
ofstream outFile;
outFile.open("../data/resultsSimulation.dat");
outFile.precision(14);
cout.precision(14);

//mobile initializations

MoFrame
KO("Ke"), // world coordinate system (assumed to be at rest)
K1("K1"), // frame 1
K2("K2"); // frame 2
MoAngularVariable
phi("phi”);

MoVector 1;

MoElementaryJoint R(K@, K1, phi, zAxis); //create a revolut joint between frames KO, K1
MoRigidLink rod(K1, K2, 1);
MoReal a;

MoSerialPort arduinoMeasurement(phi, a);

//open serial communication
arduinoMeasurement.open();
if (arduinoMeasurement.isConnected())
printf("Connection Established\n");
else
printf("Error! Check connection cable.\n");

MoMapChain pendulum;

//geometry and inetria properties
1 = MoVector(e, -1, 0);

arduinoMeasurement.launchSignal(); // awaits the start signal
arduinoMeasurement.read(); // Reads the input bytes sent from arduino
// Doesn't return until bufflLen bytes are read

arduinoMeasurement.parseInput(); // Transforms the input from char->int
// Prints out measurement

Copyright © 2017-2018 by Efthimis Pegas

27

5. Single Pendulum Application

arduinoMeasurement.doMotion(DO_POSITION);
pendulum << arduinoMeasurement << R << rod;
pendulum.doMotion(DO_POSITION);

MoReal dT = 0.01;

//visualization
MoMapChain animationChain;
animationChain << pendulum;

MoScene scene(pendulum);

scene.addAnimationObject(animationChain);
scene.setAnimationIncrement (dT);

scene.makeManipulator(R);
scene.makeShape(R, rod);
scene.makeShape(kKo, 0.4);
scene.makeShape(K1, 0.4);
scene.makeShape(K2, 0.4);

MoMapChain widgetChain;
widgetChain << pendulum;

MoWidget widget;

widget.init(scene, widgetChain, "time");
widget.addScrollBar(phi.q, 0.0, 360.0, "phi.q", 3);
widget.addScrollBar(phi.qd, -5.0, 5.0, "phi.qd", 3);
widget.addSlider(a, 0, 917, "measurement");

scene.show(); //shows scene
MoScene: :mainLoop();

return 0;

It is strongly recommended that you view the code folder for both a better understanding
and a a complete image of the the source code. There is the new class included in the
include folder, as well as the class .cpp file in the src folder. The parts that are shown here
are merely justifying my work and may carry bugs, since there have been several fixes and
updates. You can find the final work in the final/ArduinoMobileComm_v5.1 folder.

Copyright © 2017-2018 by Efthimis Pegas

	Table of Contents
	Introduction
	A Grasp of the Arduino Board and IDE

	Developing in the Arduino IDE
	A Simple Example

	Arduino & VS 2013 Serial Communication
	Control Arduino via VS (Send Data Only)
	Bidirectional Communication (Send & Receive Data)
	Sensing a Potentiometer (Transmitting Data Only)
	Multithreading & Serial Comms

	Mobile - Arduino Interaction
	Integrating C++ into Mobile
	Creating hybrid Classes

	Single Pendulum Application

